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Long-range interaction and heterogeneity yield a different kind of critical phenomenon
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DNA denaturation, wetting in two dimensions, depinning of a flux line, and other problems are known to
map onto a phase transition with effective long-range interaction. In a disordered system the latter yields a
giant, nonuniversal, temperature-dependent critical index, and macroscopic fluctuations at a finite distance
from the critical temperature. In the vicinity of the critical region the Gibbs distribution is invalid, and
thermodynamics must be calculated from first principles. There are no fluctuations above the critical tempera-
ture.
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I. PHYSICS OF DNA MELTING

Thermal unbinding~melting, coiling, denaturation! of a
double-stranded DNA molecule has been biologically imp
tant, physically unique, and extensively studied for nea
four decades@1–7#. A quenched DNA molecule is an extrao
dinary long one-dimensional~1D! system—the total length
of a single mammalian DNA is 1.8 m; it consists of;5
billion nucleotide base pairs. Their sequence is related
genetic information, yet at a long range it is random@8#. The
fraction of unbound base pairs as a function of tempera
~‘‘the DNA melting curve’’! is proportional to DNA light
absorption at about 260 nm and may be directly m
sured. DNA nucleotide base pairs@adenine-thymine~AT!,
guanine-cytosine~GC!# are large~‘‘mesoscopic’’! organic
molecules. Their unbinding releases a few thousand deg
of freedom. The corresponding entropy iss;10 per site
@1,2#. ~Here and on the Boltzmann constant is 1!. Thus, the
well known Poland-Scheraga model@1,2# of DNA melting
introduces AT and GC binding energiesE152sT1 and E2
52sT2 correspondingly. The ‘‘fusible’’T1 and ‘‘refractory’’
T2 are close: T1.T2;300 K, DT5T22T1;30 K. The
boundary energyJ;3000 K per bound segment accounts f
an incomplete unbinding at the boundaries. The loop entr
is 2c ln L per unbound segment~L is the total number of
nucleotide pairs there!. The value of the constantc increases
from 1.5 ~for random walks which form a closed loop@1,2#!
to slightly higher than 2~when one accounts for strand se
avoidance@6#, excluded volume, loop interactions@5,6# be-
tween, and stiffness@7# of various DNA segments!. The re-
sulting Poland-Scheraga effective HamiltonianH, calculated
from the energy (2sT) per site, for an infinite circular DNA
equals@1–3#

H5SE~ l n ,Dxn ;Ln!,

E~ l n ,Dxn ;Ln!5sln~dT2DTDxn!1~J1cTlnLn!, ~1!

dT5T2T̄, T̄5T1x̄1T2~12 x̄!, Dxn5 x̄2xn . ~2!
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Herex̄ is the AT concentration for the entire DNA. Equatio
~1! reduces the Hamiltonian to the energy of success
bounded segments (l n and xn are the number of base pair
and the AT concentration at thenth such segment! and to
their effective long-range repulsion (J1cTlnLn) at the dis-
tance Ln . Consistent with the Landau-Peierls theorem,c
.1 in Eq. ~1! yields a critical point in a one-dimensiona
~1D! system@1–6,9#.

Transport in a disordered low-dimensional system w
long-range interaction yielded new concepts of localizati
metal-insulator transition, giant fluctuations, and represe
tive and ensemble averages. I demonstrate that a similar
ation in thermodynamics also calls for new concepts a
implies a new kind of critical phenomena. Not by chanc
previous theories of DNA unbinding varied from the esse
tial @3# to the Kosterlitz-Thouless@4# singularity to the first
and second order transitions@5#. New results are not re
stricted to DNA. DNA denaturation maps onto a variety
other problems: the binding transition of a polymer onto a
other polymer, a membrane, or an interface@10#; wetting in
two dimensions@11#; depinning of a flux line from a colum-
nar defect in type-II superconductors@12#; and localization
of a copolymer at a two-fluid interface@13#.

II. REPRESENTATIVE HAMILTONIAN AND EXACTLY
SOLVABLE MODEL

The physics of DNA unbinding is related to its gener
small parameters in Eq.~1!. The DNA melting tempera-
ture ;300 K is low compared toJ;3000 K. Thus, DNA
melts in the vicinity of its ground state.@Indeed, the rela-
tive difference between the melting temperature of an
or GC homopolymer and of its ground state is@1–3#
;0.1 exp(2J/T);1025.] At any temperature aboveT1 and
below the DNA melting temperature, the ground state c
sists of bounded and unbounded domains, which are rel
to the DNA nucleotide sequence and were accurately ca
lated @3#. The temperaturesT1 andT2 are close. So, by Eq
~1!, whenT.T̄, to compensate for the strong repulsionJ
1cT ln L) of the ground state bounded domains they must
sufficiently large and enriched in the refractory compone
Successive melting of such domains yields a character
stepwise DNA melting curve@1,2#, which provides certain
©2003 The American Physical Society01-1
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information about the DNA nucleotide sequence@3#. The
closer to the DNA melting temperatureTc , the larger the
ground state melted domains are, the stronger the repu
of bounded domains is in Eq.~1!, thus the larger and the
more refractory they must be. WhenT→Tc , their l n
} ln Ln , andLn→` @3#. Thus, sufficiently close to the melt
ing temperature,Ln and l n exceed any finite correlation
length, correlations in and between ground state boun
domains vanish, and the probabilitywn[w( l n ,Dxn) of a
quenched bounded domain with a givenDxn at l n is Gauss-
ian,

wn[w~ l n ,Dxn!5~ l n/2pD2!1/2 exp~2 l nDxn
2/2D2!,

D25 x̄~12 x̄!. ~3!

We derive the representative~i.e., dominant in the calcula
tion of the free energy! Hamiltonian in a sufficiently close
vicinity of the melting temperature. Whenl n→`, the most
probable quenched values ofl n and xn are close, and thei

mean deviationsd l 5u l n2 l̄ u, dx5uxn2 x̄u ~from here on a
bar denotes the average! are relatively small:d l ! l̄ , dx
!D x̄. When Ln→`, the effective repulsion energy (J
1cT ln Ln)→` implies relatively small thermal fluctuation

of the ground statel n andDxn , while dL5uLn2L̄u is ;Ln
~all these statements are accurately verified later!. Bounded
domains of the lengthl n. l̄ , separated by large distance
Ln;L̄@ l̄ , imply that their w( l n ,Dxn ;Ln);w( l̄ ,D x̄;L̄) is
approximately the probability of a bounded domain, thus
proximately the relative number of bounded sitesl̄ /( l̄ 1L̄)
. l̄ /L̄, which is ; l n /Ln . The resulting relation
w( l n ;Dxn ;Ln); l n /Ln reduces the representativeDxn at l n

to l n andLn only: Dxn.DA(1/l n)ln(Ln /ln) ~where the rela-
tive contribution toDxn of the factor in Ln / l n is ;1/l n
→0). Substituting suchDxn into Eq. ~1!, one replacesH
with the representative HamiltonianHr ,

Hr5SEr~ l n ,Ln!,

Er~ l n ,Ln!5~slndT2sDDTA2l n ln Ln!1~J1cT ln Ln!.
~4!

The Hamiltonian~4! describes an ideal gas of domain pa
in different ‘‘states’’ (l n ,Ln). WhenDT50, thenHr reduces
to the exact Hamiltonian~1! of a homopolymer. In the gen
eral caseHr presents an exactly solvable model of the DN
melting, which relates the DNA free energyf 5fT per site
to the normalization condition for the Gibbs probabili
p( l ,L) of given l andL,

p~ l ,L !5exp@2~ l 1L !f2Er~ l ,L !/T#, (
l ,L

`

p~ l ,L !51.

~5!

The exact solution of Eq.~5! for f is straightforward, but it
is more explicit in a physically transparent form. WhenT

.T̄, the first term inEr in Eq. ~4! is the energy increase fo
the averagex̄. The second term describes the energy
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crease at a refractory domain. Whenl n@1, their competition
yields a sharp minimum inEr /T and~nonuniversally! renor-
malizes the loop entropy constantc,

Er~ l ,L !/T5~J/T!1~c2g!ln L1~sDT/4T!~ l 2 l m!2/ l m,

~6!

l m50.5~DDT/dT!2 ln L, g5s~DDT!2/2TdT. ~7!

Whenf l !1 and lnL@1, thenf l}f ln L may be neglected
compared tofL, and Eqs.~5!–~7! yield

P~L !5(
l 51

`

p~ l ,L !5M 21~ ln L !1/2~1/L11j!exp~2Lf!,

E
1

`

P~L !dL, Ḡ5E
1

`

GP dL51, ~8!

j5c212g, M5~sdT/2pT!1/2~dT/DDT!exp~J/T!,

~9!

whereḠ is the thermodynamic average of anyG(L).

III. VERIFICATION AND SOLUTION

Equation~8! provides an exact implicit formula for the
dimensionless free energyf as a function of two parameter
M andj ~rather than of five parametersJ/T, DT/T, T/T̄, x̄,
and c, which determinef in a nonrenormalized case!. By
Eqs.~9! and~7!, temperature dependentj is the renormalized
c. When temperature increases,j alsoincreases, andc moves
away from its critical Landau-Peierls value 1 below whi
there can be no singularity.

By Eq. ~8!, f>0. It reachesf50 at the critical tempera-
ture Tc where

jc[j~Tc!5p1/3@2M ~Tc!#
22/3!1. ~10!

There are no unbounded fluctuations atT.Tc .

When f→0, then, by Eq.~8!, L̄→`, dL5uL2L̄u;L̄.
By Eq. ~6!, u l 2 l mu}Al m! l m, since, by Eq.~7!, l m} ln L
→`. This verifies the derivation ofHr in the previous sec-
tion. The relative error in the transformation from Eq.~1! to
Eqs.~4! and~6! is ;1/lnL. SinceL;L̄, the error→0 when
L̄→`. The absolute inaccuracy in the critical termj ln L is
;jc!1.

Consider the vicinity of the critical point. Equations~7!,
~9!, and ~10! yield two different asymptotics of*P dL in
Eq. ~8!,

~fj/j!u ln fu1/2.0.5Apj21.52M when j ln~1/f!@1,

~11a!

~2/3!u ln fu235M when j ln~1/f!!1. ~11b!

Correspondingly,

f;~t/Au ln tu!1/j,
1-2
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t.~0.75Ap!j23/2~jc2j! if jc2j!jc
3/2, ~12a!

f;exp@2~1.5M !2/3# if j!M 23/2. ~12b!

The width of the interval~12a! is

~Tc2T!;dTc* ;Tc2T* ;~Tc2T̄!jc
23/2. ~13!

In the interval~12b!

l m;T̄/~sjcdT!. ~14!

Whenl m becomes less than the correlation lengthr c (r c is in
the number of base pairs!, i.e., whendT,0.3K/r c , the pre-
sented approach is inapplicable. Then successive meltin
ground state domains proceeds according to Ref.@3# and
allows for a certain DNA sequencing.

All calculations are based on statistics. Thus, they ass
N@L̄, i.e.,

N@1/f. ~15!

DNA is not completely melted in the entire interval~13! if

ln N.1/jc . ~16!

IV. SPECIFICITY OF THE DNA CRITICAL POINT

DNA critical indexes are dominated by the nonuniver
decrease in the renormalized long-range interaction ‘‘char
c with temperature. AtTc it is higher than the critical
Landau-Peierlsc51 by jc!1. In DNA J/T;T̄/DT;10,
D;0.5 @1,2#, and c.2 @9–12#. So, by Eqs.~7!, ~9!, and
~10!,

jc;0.01, ~Tc2T̄!/T̄.~s/2c1!~DDT/T̄!2;0.01.
~17!

Such close proximity toc51 yields crucial implications.
The critical exponents in Eqs.~12a! and ~12b! are giant,

1/j;~1/jc!1~jc2j!/jc
2, M2/3;~1/jc!~T2T̄!/~Tc2T̄!,

1/jc;100, ~jc2j!/jc
2u1023~Tc2T!/~Tc2T̄!u10.

~18!

Equation~8! in the cases~11a! and~11b! yields correspond-
ingly

L̄;dL̄;t/f, DL.t1/2/f@1, ~19a!

L̄;dL;DL;1/f, ~19b!

whereDL5AL22L̄2. This implies giant fluctuations whe
L̄→`.

The width of the transition~13! is small, yet macroscopic
By Eq. ~17!, (Tc2T* )/Tc;1024, i.e., Tc2T* ;0.003 K;
by Eqs.~9! and~12!, at the crossoverL̄;1040. Thus, even in
a solution with;1022 DNA nucleotide base pairs, all DNA
molecules completely unbind in the interval~12b!. At a mac-
05090
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roscopic distance fromTc , the effective long-range interac
tion exceeds any macroscopic size of the system. The sys
can no more be divided into weakly interacting subsyste
Thus, the Gibbs distribution is invalid, and thermodynam
must be calculated from the first principles. The temperat
TN of complete melting of a finite DNA of the lengthN is
determined byL;N, i.e., by

uN5~Tc2TN!/Tc;1/lnN. ~20!

Similar to dL;L̄, the mean fluctuationDuN of uN may be
estimated fromL̄(uN1DuN)2L̄(uN);L̄(uN), which yields

DuN /uN;1/lnN. ~21!

Such fluctuation is macroscopic and observable. The
proach presented suggests that this unusual critical beha
may be characteristic of any sufficiently strong and hete
geneous long-range interaction.

In a general case there are three distinctly different te
perature intervals:Tc2T* ;0.003 K, Tc2T̄;3 K, andDT
;40 K. A giant nonuniversal temperature dependent criti
exponent~12a! may be observed, by Eq.~16!, when x̄(1
2 x̄),0.03(lnN)3/4. Only in such heteropolymers, the non
universality of the giant critical index in Eq.~12a! may be
studied~e.g., via its dependence onDT, which changes to-
gether with the solvent concentration in DNA solutions@2#!.

The presented theory may be numerically tested. Once
ground state is accurately determined analytically@3#, com-
puter simulations enable the study of its fluctuations.

V. OUTSTANDING PROBLEMS AND SUMMARY

The crossover from Eq.~12b! to Eq. ~12a! manifests the
divergence ofl n5 ln L̄ from l̄ 5 ln L. By Eq. ~19a! the former
→` when T→Tc , while the latter, by Eqs.~8!, ~12a!, and
~12b!, in both cases equals

l̄ .0.3~DDT/dTc!
2@jc11/u ln fu#21. ~22!

WhenT→Tc , then l̄ .0.3(DDT/dTc)
2(1/jc). In DNA such

l̄ is ;3000, i.e., large, but finite. In the interval~12b!, the
exactly solvable model@Eqs. ~4! and ~5!# implies l; l m

; ln L̄;ln L, which is independent of the way of averagin
The singularity emerges in the interval~12a!, where lnL̄
→` vs ln L;100 calls for further theoretical study of th
model, and for experimental study of heteropolymers w
very low AT or GC concentration.

DNA heterogeneity implies low probability of the acc
dental complementarity of DNA nucleotide strands, and th
of their accidental binding in a loop, as well as slow form
tion and relaxation of knots. This may further increasec.

The presented calculation accounts for loop interaction
the value ofc only. It should be complemented with a stud
similar to Refs.@5,6#. However, whenL̄→`, the impact of
any loop correlations vanishes, and may be disregarded

Some systems@4,5# map onto the melting of directed
polymers. Then Eq.~3!, and the above approach, should
1-3
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correspondingly amended. The approach should also be
justed to and complemented with the specifics of the
proach to other relevant problems in Refs.@10–13#.

SUMMARY

An exactly solvable model of DNA melting is presente
It predicts a giant~.100! critical index. The latter may be
observed when the AT or GC concentration is bel
0.03(lnN)0.75, where N is the total number of nucleotid
pairs. In the vicinity of complete melting, the Gibbs dist
a

05090
d-
-

.

bution is invalid, and thermodynamics must be calcula
from the first principles. The approach may be applied
other problems, and thus calls for further verification a
generalization.
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