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Long-range interaction and heterogeneity yield a different kind of critical phenomenon

PHYSICAL REVIEW E 68, 050901R) (2003

Mark Ya. Azbel’
School of Physics and Astronomy, Tel-Aviv University, Ramat Aviv, 69978 Tel Aviv{ Israel
and Max-Planck-Institut fuFestkorperforschung, CNRS, F38042 Grenoble Cedex 9, France
(Received 16 December 2002; revised manuscript received 27 August 2003; published 20 Novemper 2003

DNA denaturation, wetting in two dimensions, depinning of a flux line, and other problems are known to
map onto a phase transition with effective long-range interaction. In a disordered system the latter yields a
giant, nonuniversal, temperature-dependent critical index, and macroscopic fluctuations at a finite distance
from the critical temperature. In the vicinity of the critical region the Gibbs distribution is invalid, and
thermodynamics must be calculated from first principles. There are no fluctuations above the critical tempera-

ture.
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I. PHYSICS OF DNA MELTING Herex is the AT concentration for the entire DNA. Equation

(1) reduces the Hamiltonian to the energy of successive

Thermal unbinding(melting, coiling, denaturationof a  bounded segmentd (andx, are the number of base pairs
double-stranded DNA molecule has been biologically impor-and the AT concentration at th&th such segmeptand to
tant, physically unique, and extensively studied for nearlytheir effective long-range repulsiod ¢ cTInL,) at the dis-
four decade§l—7]. A quenched DNA molecule is an extraor- tanceL,,. Consistent with the Landau-Peierls theorem,
dinary long one-dimensiondlLD) system—the total length >1 in Eq. (1) yields a critical point in a one-dimensional
of a single mammalian DNA is 1.8 m; it consists of5  (1D) system[1-6,9.
billion nucleotide base pairs. Their sequence is related to Transport in a disordered low-dimensional system with
genetic information, yet at a long range it is randf@h The  long-range interaction yielded new concepts of localization,
fraction of unbound base pairs as a function of temperaturenetal-insulator transition, giant fluctuations, and representa-
(“the DNA melting curve”) is proportional to DNA light tive and ensemble averages. | demonstrate that a similar situ-
absorption at about 260 nm and may be directly meaation in thermodynamics also calls for new concepts and
sured. DNA nucleotide base pairadenine-thymingAT), implies a new kind of critical phenomena. Not by chance,
guanine-cytosing GC)] are large (“mesoscopic”) organic  previous theories of DNA unbinding varied from the essen-
molecules. Their unbinding releases a few thousand degredsal [3] to the Kosterlitz-Thoulesp4] singularity to the first
of freedom. The corresponding entropy $5-10 per site  and second order transitio$]. New results are not re-
[1,2]. (Here and on the Boltzmann constant js Thus, the stricted to DNA. DNA denaturation maps onto a variety of
well known Poland-Scheraga moddl,2] of DNA melting  other problems: the binding transition of a polymer onto an-
introduces AT and GC binding energies=—sT; andE,  other polymer, a membrane, or an interf4&6]; wetting in
= —sT, correspondingly. The “fusibleT; and “refractory”  two dimensiong11]; depinning of a flux line from a colum-
T, are close: T;=T,~300 K, AT=T,-T,~30K. The nar defect in type-ll superconductdrs2]; and localization
boundary energy~ 3000 K per bound segment accounts for of a copolymer at a two-fluid interfadd 3].
an incomplete unbinding at the boundaries. The loop entropy
is —cInL per unbound segmert is the total number of || REPRESENTATIVE HAMILTONIAN AND EXACTLY
nucleotide pairs thejeThe value of the constaitincreases SOLVABLE MODEL
from 1.5 (for random walks which form a closed lo¢p,2]) ) o _ )
to slightly higher than Zwhen one accounts for strand self- ~ The physics of DNA unbinding is related to its generic
avoidance 6], excluded volume, loop interactiofis,6] be- ~ small parameters in Eql). The DNA melting tempera-
tween, and stiffnesf7] of various DNA segmenjs The re-  ture ~300 K is low compared taJ~3000 K. Thus, DNA
sulting Poland-Scheraga effective Hamiltonidncalculated ~Melts in the vicinity of its ground stat¢indeed, the rela-

from the energy(_s'r) per Site, for an infinite circular DNA tive difference between the mel“ng temperature of an AT
equals[1-3] or GC homopolymer and of its ground state [i$—3]

~0.1expJIT)~10 5.] At any temperature abov&; and
H=SE(l,,Ax,:L,), below the DNA melting temperature, the ground state con-
sists of bounded and unbounded domains, which are related
to the DNA nucleotide sequence and were accurately calcu-
E(ln, A%y ;Ln) =Slg(6T—ATAXy) +(J+cTInLy), (1) |ated[3]. The temperatureS,; and T, are close. So, by Eq.
L (1), whenT>T, to compensate for the strong repulsiah (
OST=T-T, T=TXx+Ty(1-X), AX,=X—X,. (2 +cTInL) of the ground state bounded domains they must be
sufficiently large and enriched in the refractory component.
Successive melting of such domains yields a characteristic
*Permanent address. stepwise DNA melting curvé¢l,2], which provides certain
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information about the DNA nucleotide sequen&. The crease at a refractory domain. Whegg> 1, their competition
closer to the DNA melting temperatufE;, the larger the yields a sharp minimum i&, /T and(nonuniversally renor-
ground state melted domains are, the stronger the repulsianalizes the loop entropy constant

of bounded domains is in Eql), thus the larger and the

more refractory they must be. Whefi—T,, their I, E.(1,L)/T=(IT)+(c—y)InL+(SATAT)(I = 1,))/l 1y,
«InL,, andL,—« [3]. Thus, sufficiently close to the melt- (6)
ing temperaturel ,, and |,, exceed any finite correlation

length, correlations in and between ground state bounded  |m=0.5(DAT/6T)?InL, y=s(DAT)?2T5T. (7)
domains vanish, and the probability,=w(l,,,Ax,) of a
guenched bounded domain with a giv&r,, atl, is Gauss-
ian,

When ¢l <1 and InL>1, then¢l < ¢ InL may be neglected
compared toplL, and Eqs(5)—(7) yield

— _ 21172 _ 215012 o
Wo=w(l,,Ax,) = (I/27D2) Y2 exp( — 1 ,Ax%/2D?), P(L):Z’l (1L =M~ H(In L) (L ) expl - L),

D?=X%X(1-X). ©)

We derive the representativee., dominant in the calcula- fxp(L)dL, G= wap dL=1, (8)
tion of the free energyHamiltonian in a sufficiently close 1 1

vicinity of the melting temperature. Whdn— o, the most

probable quenched values kf and x,, are close, and their E=c—1—y, M=(sT2aT)YASTIDAT)expJ/T),

mean deviationss! =|I,— 1|, &x=|x,—x| (from here on a 9
bar denotes the averggare relatively small:sl<I, 6x

<AX. When L,—, the effective repulsion energyd (
+cTInL,)—« implies relatively small thermal fluctuations

of the ground staté, andAx,,, while sSL=|L,—L]| is ~L,
(all these statements are accurately verified Jat@ounded Equation(8) provides an exact implicit formula for the
domains of the length,~1, separated by large distances dimensionless free energyas a function of two parameters
L,~L>1, imply that theirw(l,,,AX,;L,)~w(l,AX;L) is M andg(rgther than pf fiV(_a parametedsT, A_T/T, TIT, X,
approximately the probability of a bounded domain, thus ap@nd ¢, which determineg in a nonrenormalized cageBy
proximately the relative number of bounded sitéél +L) Egs.(9) and(?), tempe'rature dependeﬁts the renormalized

— , ) i i ¢. When temperature increaséslsoincreasesandc moves
=|/L, which is ~I,/L,. The resulting relation

: away from its critical Landau-Peierls value 1 below which
w(ly;AX,;Ly)~1,/L, reduces the representativex, atl,  there can be no singularity.

to I, andL, only: Ax,=D~(1/,)In(L,/I,) (where the rela- By Eq. (8), $=0. It reachesp=0 at the critical tempera-
tive contribution toAx, of the factor inL,/l, is ~1/1,  t,re T. where

—0). Substituting such\x, into Eq. (1), one replace#d

with the representative Hamiltonia, , E=ET)=m2M(T,)] ?P<1. (10

whereG is the thermodynamic average of aB{L).

IIl. VERIFICATION AND SOLUTION

Hi=2E(ln,Ln), There are no unbounded fluctuationsTat T, .

_ When ¢—0, then, by Eq.(8), L—o, sL=|L—L|~L.
E.(l,,L,)=(sl,6T—sDAT2l,InL,)+(J+cTInL,). ;
(I L) =(shy ninbo)+( ”)(4) By Eq. (6), || —ly*In<!m. since, by Eq.(7), Im<InL
—o0, This verifies the derivation dfl, in the previous sec-
The Hamiltonian(4) describes an ideal gas of domain pairstion. The relative error in the transformation from Ed) to
in different “states” (,,L,). WhenAT=0, thenH, reduces Egs.(4) and(6) is ~1/InL. SinceL~L, the error~0 when

to the exact Hamiltoniaxl) of a homopolymer. In the gen- 7. The apsolute inaccuracy in the critical teghn L is
eral caseH, presents an exactly solvable model of the DNA~§ <1
<1

melting, which relates the DNA free enerdy- ¢T per site Consider the vicinity of the critical point. Equatioli®),
to the normalization condition for the Gibbs probability (9), and (10) yield two different asymptotics of P dL in
p(l,L) of givenl andL, Eq,. )
p(l,L)ZEXd—(l+L)¢—Er(I,L)/T], 2 p(l,L):l (¢§/§)||n ¢|l/220.5\/;§71'5_M when fln(l/¢)>l,
L - (113

, , , , (2/3)]In $|=M when £In(1/¢)<1.  (11b
The exact solution of Eq5) for ¢ is straightforward, but it

is more explicit in a physically transparent form. Wh&n  correspondingly,

>T, the first term inE, in Eq. (4) is the energy increase for
the averagex. The second term describes the energy de- d~(/y]In 7-|)1’f,
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7=(0.75/m) ¢ ¢~ §) i & ¢<Ed? (129
d~exd —(1.5M)23] if ¢<M 32 (12b)
The width of the interval123 is
(Te=T)~Te~Te- T ~(T- D2 (13
In the interval(12b)
|y~ T/(5E.5T). (14)

Whenl ,, becomes less than the correlation lengtlr is in
the number of base pajts.e., whensT<0.3K/r., the pre-

sented approach is inapplicable. Then successive melting of

ground state domains proceeds according to R&f.and
allows for a certain DNA sequencing.
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roscopic distance frori, the effective long-range interac-
tion exceeds any macroscopic size of the system. The system
can no more be divided into weakly interacting subsystems.
Thus, the Gibbs distribution is invalid, and thermodynamics
must be calculated from the first principles. The temperature
Ty of complete melting of a finite DNA of the lengtN is
determined by ~N, i.e., by

On=(Te—Tp)/Te~1/INN. (20)

Similar to SL~L, the mean fluctuatio 0y of 6y may be

estimated fromL(6y+ A 6y) —L(6x) ~L(6y), Which yields
AGy/6y~1/InN. 1)

Such fluctuation is macroscopic and observable. The ap-
proach presented suggests that this unusual critical behavior

All calculations are based on statistics. Thus, they ass,um,r.?]aly be characteristic of any sufficiently strong and hetero-

N>L, ie.,
N>1/¢. (15
DNA is not completely melted in the entire intervdd) if

InN>1/¢,. (16)

IV. SPECIFICITY OF THE DNA CRITICAL POINT

DNA critical indexes are dominated by the nonuniversal

geneous long-range interaction.
In a general case there are three distinctly different tem-

perature intervalsT,—T*~0.003 K, T.—T~3 K, andAT
~40 K. A giant nonuniversal temperature dependent critical
exponent(12a may be observed, by Eq16), whenx(1
—X)<0.03(InN)*¥4 Only in such heteropolymers, the non-
universality of the giant critical index in E4129 may be
studied(e.qg., via its dependence axiT, which changes to-
gether with the solvent concentration in DNA solutid2$).

The presented theory may be numerically tested. Once the

decrease in the renormalized long-range interaction “chargeground state is accurately determined analyticE8ly com-

c with temperature. AtT. it is higher than_the critical
Landau-Peierlc=1 by ¢.<1. In DNA J/T~T/AT~10,
D~0.5[1,2], andc=2 [9-12. So, by Egs.(7), (9), and
(10),

£.~0.01, (T.—T)/T=(s/2c,)(DAT/T)2~0.01.
17

Such close proximity toc=1 yields crucial implications.
The critical exponents in Eq$12a and(12b) are giant,

Vg~ (L) + (éc—O)IEE,  MZP~ (L) (T-T)/(T—T),

1/£.~100, (&—&)/€=10¥(T.~T)/(T,~T)=10.
(18

Equation(8) in the caseg11a and(11b) yields correspond-
ingly

L~dL~7l¢p, AL=72¢p>1, (199

L~68L~AL~1/¢, (19b)

whereAL=L2—-L2. This implies giant fluctuations when

L—oo,

The width of the transitioril3) is small, yet macroscopic.
By Eq. (17), (T¢—T*)/T~107%, ie., T.—T*~0.003K;
by Egs.(9) and(12), at the crossover ~10%. Thus, even in

a solution with~ 10?2 DNA nucleotide base pairs, all DNA

molecules completely unbind in the intervaPb). At a mac-

puter simulations enable the study of its fluctuations.

V. OUTSTANDING PROBLEMS AND SUMMARY

The crossover from Eq12b) to Eq. (129 manifests the
divergence of ,=InL from | =InL. By Eq. (199 the former

—o whenT—T,, while the latter, by Eqs(8), (123, and
(12b), in both cases equals

1=0.3DAT/6To) &+ 1In |1 (22)

WhenT—T,, thenl =0.3(DAT/8T,)?(1/&.). In DNA such

1 is ~3000, i.e., large, but finite. In the intervél2b), the
exactly solvable mode[Egs. (4) and (5)] implies 1~1,,

~InL~InL, which is independent of the way of averaging.

The singularity emerges in the intervel2a, where InL
—o0 vs InL~100 calls for further theoretical study of the
model, and for experimental study of heteropolymers with
very low AT or GC concentration.

DNA heterogeneity implies low probability of the acci-
dental complementarity of DNA nucleotide strands, and thus
of their accidental binding in a loop, as well as slow forma-
tion and relaxation of knots. This may further increase

The presented calculation accounts for loop interaction in
the value ofc only. It should be complemented with a study

similar to Refs[5,6]. However, whernL—, the impact of

any loop correlations vanishes, and may be disregarded.
Some system$4,5] map onto the melting of directed

polymers. Then Eq(3), and the above approach, should be
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correspondingly amended. The approach should also be atiution is invalid, and thermodynamics must be calculated
justed to and complemented with the specifics of the apfrom the first principles. The approach may be applied to
proach to other relevant problems in Refs0-13. other problems, and thus calls for further verification and
generalization.
SUMMARY
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